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Abstract

The periodic solutions of a strongly cubic nonlinear oscillator whose motion is described with the generalized Rayleigh

equation are studied. Approximate analytic solving methods are introduced. A new method based on homotopy and

averaging is developed to determine the limit cycle motion. The obtained analytical solutions are compared with those

calculated by the elliptic harmonic balance method with generalized Fourier series and Jacobian elliptic functions. Three

types of cubic nonlinearity are considered: the coefficients of the linear and cubic terms are positive, the coefficient of the

linear term is positive and that of the cubic term is negative and the opposite case. Comparisons of the analytical solution

and numerical solution, obtained by using the Runge–Kutta method, are illustrated with examples.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Throughout the last century many authors have devoted their attention to the study of the Van
der Pol oscillator whose motion is described with a differential equation usually called the Rayleigh
equation

€xþ c1x� eð _x� _x3Þ ¼ 0, (1)

where c1 and e are constant parameters. For e a small parameter, approximate techniques (method of
harmonic balance (HB) [1,2], Lindstedt–Poincaré (L–P) [3], Krylov–Bogoliubov–Mitropolski (KBM) [3],
averaging [4] and multiple scales (MS) [1]) are applied to solve the differential equation (1). The solution of the
equation is approximately sinusoidal with a slowly varying amplitude and phase and it approaches a limit
cycle at t!1; irrespective of the initial conditions. The trajectory in the phase plane tends to a limit cycle
(closed curve) and for the steady-state motion it is a circle with a radius ac which is the limit amplitude
independent of the initial state. The analytical solution was enough to explain some of the phenomena which
occur in the real systems. For example, in a Van der Pol electrical circuit the existence of a limit cycle was
explained by the energy store in the capacitor during the slowly varying part of the motion, while during the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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abrupt changes the energy was being suddenly released. Unfortunately, the quantitative values obtained
analytically were not enough accurate. This was the reason why the Rayleigh equation was extended with
nonlinear terms. The generalized Rayleigh differential equation is

€xþ c1xþ c3x
3 � eðc0 _x� c2 _x

3Þ ¼ 0, (2)

where e is a constant which is often assumed to be small ðe51Þ and ci where i ¼ 0; . . . ; 3 are constant
coefficients. For c140 and c340 the generalized Rayleigh equation is studied by using Jacobian elliptic
functions with the generalized harmonic balance method [5]. The conditions for existence of a limit cycle are
discussed. The method is developed by Bejarano and Sanchez [6].

In this paper an extension to the previous investigation is done. The influence of the type of nonlinearity
(hard or soft) on the parameters of limit cycle motion described with the generalized Rayleigh equation is
investigated. The new analytical solving procedure based on the homotopy perturbation method [7–10] and
averaging procedure is introduced. The case when the coefficients of linear and cubic term are positive (c140
and c340) is compared with two other cases: the coefficient of the linear term is positive and that of the cubic
term is negative (c140 and c3o0, and the coefficient of the linear term is negative and that of the cubic term is
positive (c1o0 and c340). The special case when the linear term is zero ðc1 ¼ 0Þ is also considered. The
solution of Eq. (2) is determined using the elliptical harmonic balance method with a generalized Fourier series
([11,12]) too. The suggested method is based on the procedures for solving strong nonlinear differential
equations ([13–17]). To prove the accuracy of the analytical procedures three examples are given. The limit
cycle amplitude is calculated not only analytically but also numerically. The analytical solutions are compared
with the numerical ones.

2. Methods

Both the suggested solving methods, the homotopy averaged method and the generalized harmonic balance
method, are based on the generating solution

xðtÞ ¼ a epðot; k2
Þ, (3)

which represents the exact analytical solution of the strong nonlinear Duffing equation

€xþ c1xþ c3x
3 ¼ 0 (4)

with initial conditions:

xð0Þ ¼ A; _xð0Þ ¼ 0, (5)

where a; o and k2 are constants and epðot; k2
Þ denotes a convenient Jacobian elliptic function: snðot; k2

Þ;
cnðot; k2

Þ or dnðot; k2
Þ according to the type of equation (4) which depends on the sign of c1 and c3 [16].

(A survey of elliptic functions is given in the appendix.) The constants o and k2 are the known values which
depend on a.

The trial solution of Eq. (2) is assumed in the form (3) but the constants a, o and k2 take into consideration
the specifics of the damping terms and the influence of c0 and c2.

In the paper only the first-order approximation is considered as it gives results with enough technical
accuracy.

2.1. Homotopy averaging method

The new homotopy procedure which includes the averaging of the elliptic function is introduced. Based on
the homotopy solving method for a differential equation with strong cubic nonlinearity and the averaging of
the elliptic functions the method of homotopy averaging is developed.

In the paper of Cveticanin (see Ref. [10]) the homotopy solving method for the differential equation with
strong cubic nonlinearity

€xþ c1xþ c3x3 ¼ eNðx; _xÞ, (6)



ARTICLE IN PRESS
L. Cveticanin et al. / Journal of Sound and Vibration 318 (2008) 580–591582
where eNðx; _xÞ is a small function, is considered. The transformation of the variable xðtÞ to X ðt; pÞ is
done and the embedding parameter p 2 ½0; 1� is introduced. Using the homotopy procedure for Eq. (6) it
transforms into

ð1� pÞ½ð €X þ c1X þ c3X
3Þ � ð €x0 þ c1x0 þ c3x

3
0Þ� þ p½ €X þ c1X þ c3X 3 � eNðX ; _X Þ� ¼ 0. (7)

Following the suggested method and relation (7) Eq. (2), after homotopy transformation, is

ð1� pÞ½ð €X þ c1X þ c3X
3Þ � ð €x0 þ c1x0 þ c3x

3
0Þ� þ p½ €X þ c1X þ c3X 3 � eðc0 _X � c2 _X

3
Þ� ¼ 0 (8)

with initial conditions (5)

X ð0; pÞ ¼ A; _X ð0; pÞ ¼ 0, (9)

where x0 � x0ðtÞ is the initial approximate solution which has the form of Eq. (3)

x0 ¼ a epðot; k2
Þ � aðepÞ. (10)

Using the Maclaurin series expansion

X ðt; pÞ ¼ x0ðtÞ þ
X1
n¼1

xn

n!

� �
pn; n ¼ 1; 2; 3; . . . , (11)

where

xn � xnðtÞ ¼
qX ðt; pÞ

qpn

� �
p¼0

, (12)

the nonlinear differential equation (8) is transformed into the system of n linear differential equations

p0 : €x0 þ c1x0 þ c3x
3
0 ¼ 0, (13)

p1 : €x1 þ c1x1 þ 3c3x
2
0x1 ¼ �ð €x0 þ c1x0 þ c3x

3
0Þ þ eðc0 _x0 � c2 _x

3
0Þ, (14)

..

.

Substituting the assumed solution (10) into Eq. (13) and using the harmonic balance method we obtain the
modulus k and the frequency o of the elliptic function

k ¼ Fkða;oÞ; o ¼ Foða; kÞ. (15)

Applying Eq. (10) the differential equation (14) is transformed into the first-order deformation equation

€x1 þ c1x1 þ 3c3a
2ðepÞ2x1 ¼ eðc0aðep_Þ � c2a3ðep_Þ

3
Þ, (16)

where ð�_Þ � dð�Þ=dt: Relation (16) is a nonlinear nonhomogenous differential equation with a time-variable
coefficient. Finding an exact analytical solution for Eq. (16) is not an easy task. Our aim is not to solve the
equation but to determine the amplitude of steady-state motion.

Due to the property of the series expansion (12) and the form of the left-hand side of Eq. (14)
the solution of Eq. (16) is assumed in the form of the first time derivative of the elliptic function in
Eq. (10)

x1 ¼ bðep_Þ, (17)

where b is a constant. Substituting the assumed solution (17) into Eq. (16) we obtain

b½ðep Þ
���

þc1ðep_Þ þ 3c3a
2ðepÞ2ðep_Þ� ¼ eðc0aðep_Þ � c2a

3ðep_Þ
3
Þ. (18)

We are interested only in the limit cycle solution. To obtain the parameters of the limit cycle the averaging of
Eq. (18) is introduced. The averaging is done for the period of elliptic function 4Kðk2

Þ, where Kðk2
Þ � K is the

complete elliptic integral of the first kind. The averaged relation (18) is

bfhðep Þ
���

ðep_Þi þ c1h½ðep_Þ�2i þ 3c3a
2hðepÞ2½ðep_Þ�2ig ¼ eðc0ah½ðep_Þ�2i � c2a

3h½ðep_Þ�4iÞ, (19)
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where h�i ¼ 1=4K
R 4K

0 ð�Þdt, t ¼ ot. Then the left-hand side of Eq. (18) is always zero and the right-hand side
represents the condition for limit cycle motion

c0ah½ðep_Þ�2i � c2a3h½ðep_Þ�4i ¼ 0. (20)

Solving the system of algebraic equations (20) and (15) the limit cycle amplitude a, the frequency of
vibration o and the modulus of the elliptic function k are obtained.

2.2. The generalized harmonic balance method

The generalized harmonic balance method assumes a trial solution in the form (3). Substituting Eq. (3)
and the corresponding time derivatives into Eq. (2) and using the Fourier series expansion of the elliptic
function [18], we obtain

F 1ða;o; k
2; e; aÞ cos Wþ F2ða;o; k

2; e; aÞ sin Wþ ðhigher order harmonicsÞ ¼ 0, (21)

where W ¼ amðot; k2
Þ is the generalized circular function which represents the amplitude of the Jacobi elliptic

function and gives the relation between the argument of the circular and elliptic function [6], and a collectively
denotes any parameter which appears in the nonlinear function. It is worth stating that only the first harmonic
of Fourier series is used as it gives enough accurate results. According to the basic assumption that the terms
with cos W and sin W in Eq. (21) are zero

F1ða;o; k
2; e; aÞ ¼ 0; F2ða;o; k

2; e; aÞ ¼ 0 (22)

and using the harmonic balance method [19] the parameters a, o and k2 are obtained.

3. A study of the three types of generalized Rayleigh oscillators

The two suggested methods are applied for solving three types of generalized Rayleigh equations: (a) c140
and c340, (b) c140 and c3o0 and (c) c1o0 and c340. All the three types of equations have a physical
meaning: case (a) corresponds to the oscillator with a hardening spring [1], case (b) to the oscillator with a
softening spring [1] and case (c) is the first modal equation of transversal vibrations of a cantilever beam, for
example, Refs. [20–22].

3.1. Homotopy averaging method

Oscillator type I: c140; c340
For this type of oscillator the generating solution is as follows [16]:

x0 ¼ a cnðot; k2
Þ � acn, (23)

where

k2
¼

c3a
2

2o2
; o2 ¼ c1 þ c3a2. (24)

According to the aforementioned procedure, the solution of Eq. (14) is assumed to be

x1 ¼ bðcn_Þ ¼ �bosndn, (25)

where b is a constant. Substituting Eq. (25) into the relation (20) we obtain

c0ðM2 � k2M4Þ � c2a
2o2ðM4 � 2k2M6 þ k4M8Þ ¼ 0, (26)

where M2n, n ¼ 1; . . . ; 4 are the averaged elliptic functions which are given in the Appendix. Using Eqs. (24)
and (26) we obtain the relation for k2

1

3
ð1� k2

Þ � ð1� 2k2
Þ

E

K

� �
¼

c21
c3

c2

c0

� �
1

35k2
ð8k6
� 13k4

þ 3k2
þ 2Þ � ð16k6

� 24k4
þ 4k2

þ 2Þ
E

K

� �
, (27)
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where E � Eðk2
Þ is the complete elliptic integral of the second kind [18]. For the known value of k2 according

to Eq. (24) the limit cycle amplitude and frequency are determined

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

c3

2k2

ð1� 2k2
Þ

s
; o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

1� 2k2

r
. (28)

Then the orbital motion is

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
70k4
½ð1� k2

ÞK � ð1� 2k2
ÞE�

3ð1� 2k2
Þ½ð8k6

� 13k4
þ 3k2

þ 2ÞK � ð16k6
� 24k4

þ 4k2
þ 2ÞE�

s ffiffiffiffiffiffiffiffiffi
1

c1

c0

c2

r
cn t

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k2

p ffiffiffiffiffi
c1
p

; k2

 !
. (29)

Two special cases are considered.
1. Linear case

For the special case when c3 ¼ 0 the modulus of the elliptic function is zero according to Eq. (24). For k ¼ 0
the cn elliptic function transforms into a circular cos function, sn into sin function, dn is 1 and the period of
functions is 2p. The frequency of vibration is o ¼

ffiffiffiffiffi
c1
p

: Using the averaged values of the circular functions
hsin2i ¼ 1=2 and hsin4i ¼ 3=8 the amplitude of the limit cycle motion is

a ¼
2

o
ffiffiffi
3
p

ffiffiffiffiffi
c0

c2

r
. (30)

This value was previously obtained by Nayfeh and Mook [1]. The orbital motion is

x ¼ 1:1547

ffiffiffiffiffiffiffiffiffi
1

c1

c0

c2

r
cosðt

ffiffiffiffiffi
c1
p
Þ. (31)

2. Pure cubic nonlinearity

According to Eq. (24) the frequency and the modulus of the elliptic function are, respectively,

o ¼ a
ffiffiffiffiffi
c3
p

; k2
¼ 1

2
¼ const. (32)

The approximate value of the amplitude of the limit cycle is

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
7

3

c0

c2c3

4

r
¼ 1:2359

ffiffiffiffiffiffiffiffiffi
1

c3

c0

c2

4

s
(33)

and the orbital motion is

x ¼ 1:2359

ffiffiffiffiffiffiffiffiffi
1

c3

c0

c2

4

s
cn 1:2359t

ffiffiffiffiffiffiffiffiffi
c3

c0

c2

4

r
; 0:5

� �
. (34)

The period of orbital motion T is

T ¼
4Kð0:5Þ

1:2359

ffiffiffiffiffiffiffiffiffi
c3

c0

c2

4

r ¼ 6

ffiffiffiffiffiffiffiffiffi
1

c3

c2

c0

4

s
(35)

and does not depend on parameter e.
Oscillator type II: c140; c3o0
For this type of oscillator, the generating function takes the form

x0 ¼ a snðot; k2
Þ, (36)

where

k2
¼
ð�c3Þa

2

2o2
; o2 ¼ c1 þ

1
2

c3a2. (37)
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Substituting the assumed solution

x1 ¼ bðsn_Þ ¼ bocndn (38)

and Eq. (24) into Eq. (20) the following relation is obtained:

½k2M4 � ð1þ k2
ÞM2 þ 1� �

2

ð1þ k2
Þ
2

c21
ð�c3Þ

c2

c0
½1� 2ð1þ k2

ÞM2 þ ð1þ 4k2
þ k4
ÞM4

� 2k2
ð1þ k2

ÞM6 þ k4M8 ¼ 0, (39)

where the values of M2n are given in the appendix. After some transformation the relation for k2 is
obtained

c21
ð�c3Þ

c2

c0
¼ �

35k2

6

½ð1� k2
ÞK � ð1þ k2

ÞE�ð1þ k2
Þ
2

½ð2� 11k2
þ 8k4

þ k6
ÞK � ð2� 10k2

� 10k4
þ 2k6

ÞE�
. (40)

The amplitude and the frequency of the limit cycle motion are

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c1k

2

ð�c3Þð1þ k2
Þ

s
; o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

1þ k2

r
. (41)

Oscillator type III: c1o0; c340
For this type of oscillator, we take a generating function

x0 ¼ a dnðot; k2
Þ, (42)

with

o2 ¼ 1
2

c3a2; k2
¼ 2þ

c1

ð1=2Þc3a2
. (43)

For the limit cycle motion we have

c0ðM2 �M4Þ � c2a
2o2k4

ðM4 � 2M6 þM8Þ ¼ 0, (44)

where the averaged functions M2n, n ¼ 1; . . . ; 4 are given in the Appendix. Solving the relations (43) and (44)
the parameters of the orbital motion k, a and o are obtained

c2

c0

ð�c1Þ
2

c3
¼ �

35

6

½2ð1� k2
ÞK � ð2� k2

ÞE�ð2� k2
Þ
2

Kðk6
þ 15k4

� 32k2
þ 16Þ � Eð2k6

þ 4k4
� 24k2

þ 16Þ
, (45)

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�c1Þ

c3

2

2� k2

s
; o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�c1Þ

2� k2

s
. (46)
3.2. The generalized harmonic balance method

Oscillator type I: c140; c340
For this type of oscillator, one can take a generating function (23). Differentiating Eq. (23) twice with

respect to t and substituting into Eq. (2) one obtains

½c3a3 � 2ao2k2
�cn3 þ ½c1aþ 2ao2k2

� ao2�cn� c0eo a sn dn� c2eo3a3 sn3 dn3
¼ 0. (47)

The generalized Fourier expansion, if the expression is limited to the first harmonic [18], [?], gives

½ð3
4
Þðc3a3 � 2ao2k2

Þ þ ðc1aþ 2ao2k2
� ao2Þ� cos W� ½c0eaoH1 þ c2ea3o3H2� sin Wþ ðhigher harmonicsÞ ¼ 0,

(48)
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where

H1 ¼
1

p

Z 2p

0

snu dnu sin WdW ¼
1

p

Z 4K

0

sn2 u dn2udu

¼
4

3pk2
½ð2k2

� 1ÞE þ ð1� k2
ÞK �, (49)

H2 ¼
1

p

Z 2p

0

sn3 u dn3 u sin WdW ¼
1

p

Z 4K

0

sn4u dn4udu

¼
4

35pk4
½ð8k6

� 13k4
þ 3k2

þ 2ÞK � ð16k6
� 24k4

þ 4k2
þ 2ÞE� (50)

and the argument of sin W and cos W in the Fourier expansion is the amplitude function W ¼ amðot; k2
Þ ¼ am u,

so that cos W ¼ cnðot; k2
Þ ¼ cn u ¼ cn, sin W ¼ snðot; k2

Þ ¼ sn u ¼ sn. If we introduce these transformations
into equations (48), we obtain

½3
4
ðc3a

3 � 2a o2k2
Þ þ ðc1aþ 2a o2k2

� a o2Þ� cos W� ½c0eaoð½4ð2k2
� 1ÞE þ 4ð1� k2

ÞK �=3pk2
Þ

þ c2ea3o3ð½4ð8k6
� 13k4

þ 3k2
þ 2ÞK � 4ð16k6

� 24k4
þ 4k2

þ 2ÞE�=35pk4
Þ� sin W

þ ðhigher harmonicsÞ ¼ 0. (51)

Following the method of harmonic balance and equating the coefficient of sin W with zero in Eq. (51),
one obtains

a2 ¼
�35c0k

2
½ð2k2

� 1ÞE þ ð1� k2
ÞK �

3c2o2½ð8k6
� 13k4

þ 3k2
þ 2ÞK � ð16k6

� 24k4
þ 4k2

þ 2ÞE�
. (52)

Equating the first and the second terms of coefficient cos W with zero we obtain relations (24).
This result has been previously shown by Margallo and Bejarano [5]. Substituting Eq. (24) into Eq. (52) the

relation for the modulus of elliptic function is obtained

c21c2

c0c3
¼

35½ð1� 2k2
ÞE � ð1� k2

ÞK �ð1� 2k2
Þ
2

6½ð8k6
� 13k4

þ 3k2
þ 2ÞK � ð16k6

� 24k4
þ 4k2

þ 2ÞE�
. (53)

Comparing Eq. (53) with Eq. (27) it is obvious that they are equal. The amplitude and the modulus of the
elliptic function depend on k2 and Eq. (28) are the corresponding relations.

Oscillator type II: c140; c3o0
For this type of oscillator, the generating function takes the form

x ¼ a snðot; k2
Þ. (54)

Following the suggested procedure, assumption (54) and the Fourier expansion of the function Eq. (2)
transforms into

½ð3
4
Þð2ao2k2

þ c3a3Þ þ ðc1a� ao2k2
� ao2Þ� sin Wþ ½c0eaoH3 þ c2ea3o3H4� cos Wþ ðhigher harmonicsÞ ¼ 0,

(55)

where

H3 ¼
1

p

Z 2p

0

cn u dn u cos WdW ¼
4

3pk2
½ð1þ k2

ÞE � k02K �, (56)

H4 ¼
1

p

Z 2p

0

cn3u dn3 u cos WdW

¼
4

35pk4
½ðk6
þ 8k4

� 11k2
þ 2ÞK � ð2k6

� 10k4
� 10k2

þ 2ÞE�, (57)
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and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
is the complementary modulus. Equating the terms with sin W and cos W to zero, one obtains

relations (37) and

a2 ¼
�35c0k2

½ð1þ k2
ÞE � k02K �

3c2o2½ðk6
þ 8k4

� 11k2
þ 2ÞK � ð2k6

� 10k4
� 10k2

þ 2ÞE�
. (58)

Comparing formulas (37) and (58) with Eqs. (40) and (41) it is evident that they are the same.
Oscillator type III: c1o0; c340
For this type of oscillator, we take a trial function

x ¼ a dnðot; k2
Þ. (59)

The application of Fourier series and Eq. (59) in Eq. (2) yields

½ð3
4
Þðc3a

3 � 2ao2Þ þ ½c1aþ ao2ð2� k2
Þ�� cos W� ½c0eaok2H5 þ c2ea3o3k6H6� sin Wþ ðhigher harmonicsÞ ¼ 0,

(60)

where

H5 ¼
1

p

Z 2p

0

sn u cn u sin WdW ¼
4

3pk2
½ð2� k2

ÞE � 2k02K �, (61)

H6 ¼
1

p

Z 2p

0

sn3 u cn3u sin WdW

¼
4

35pk6
½ðk6
þ 15k4

� 32k2
þ 16ÞK � ð2k6

þ 4k4
� 24k2

þ 16ÞE�. (62)

The Fourier expansion in terms of sin W and cos W is calculated with the approximate value W ¼ k
R

cn udu;
which gives cos W ¼ dn u ¼ dn and sin W ¼ k sn u ¼ k sn. Putting the coefficients of sin W and cos W, respectively,
equal to zero in Eq. (60) we obtain Eq. (43) and

a2 ¼
�35c0½ð2� k2

ÞE � 2k02K �

3c2o2½ðk6
þ 15k4

� 32k2
þ 16ÞK � ð2k6

þ 4k4
� 24k2

þ 16ÞE�
. (63)

Solving relations (63) and (43) we obtain that the modulus of elliptic function k depends on the values of the
coefficients ðc2=c0Þ and ðc

2
1=c3Þ and is given with Eq. (45). The amplitude and frequency of orbital motion

satisfy relations (46).

4. Numerical examples

It is important to compare the analytical approximate results with the ‘exact’ solutions obtained by
numerical integration of the equations of motion. The numerical solutions are obtained by using the symbolic
language Mathematica 5.2. Three numerical examples are considered. The coefficients in the examples are
arbitrary and have no special physical meaning. In all the examples e ¼ 0:1.

Example 1. Consider the equation

€xþ x3 � eð1� _x2Þ _x ¼ 0, (64)

which is a special case of the oscillator of type I. Using the approximate analytical solution

x ¼ 1:2359cnð1:2359t; 0:5Þ (65)

and its first time derivative

_x ¼ �1:5274snð1:2359t; 0:5Þdnð1:2359t; 0:5Þ (66)

by eliminating the parameter t the limit cycle in x� _x is obtained (Fig. 1)

_x2 ¼ 1:1666� 0:5x4. (67)
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Fig. 2. Limit cycle solutions of Eq. (68) obtained analytically ð____Þ and numerically (- - - ).
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Applying the Runge–Kutta method the numerical solution of Eq. (64) is calculated and also plotted in Fig. 1.
The difference between the analytical and numerical results is negligible.

Example 2. To illustrate case II, we consider the equation

€xþ x� 0:2x3 � eð1� _x2Þ _x ¼ 0. (68)

The analytical solution in the first approximation is

x ¼ 1:3288snð0:8905t; 0:189Þ. (69)

Using the first time derivative

_x ¼ 1:1833cnð0:8905t; 0:189Þdnð0:8905t; 0:189Þ (70)

and (69) the limit cycle in x� _x (Fig. 2) is

_x2 ¼ 1:4002ð1� 0:56634x2Þð1� 0:10704x2Þ. (71)

Comparing result (71) with that obtained by numerical integration of Eq. (68) it is shown that the solutions are
in good agreement.

Example 3. Case III is illustrated by the following equation:

€x� 2:4xþ x3 � eð1� _x2Þ _x ¼ 0. (72)

The approximate analytical solution according to Eqs. (45) and (46) is

x ¼ 2: 080 1 dnð1: 470 8t; 0:890 63Þ (73)
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and the limit cycle is

_x2 ¼ 9:36ð1� 0:23112x2Þð0:23112x2 � 0:10937Þ. (74)

Eq. (72) is numerically solved and the result is compared with the analytic one (74). In Fig. 3 both the solutions
are plotted. Comparing the solutions it is evident that the difference is negligible.
5. Conclusion

The following conclusions’ are made:
1. Both the approximate analytical methods, the homotopy averaged method introduced in the paper and

the generalized harmonic balance method, are suitable for solving the generalized Rayleigh differential
equation.

2. The results obtained using the both analytical procedures are equal, i.e., give the same values for the
amplitude and frequency of orbital motion and also the modulus of the elliptic function which describes the
motion.

3. In the paper it is shown that the generalized harmonic balance method is also applicable for the systems
with soft cubic nonlinearity and the system where the linear term has a negative coefficient and not only for the
oscillator with hard cubic nonlinearity as it was previously concluded.

4. Comparing the analytically obtained results for orbital motion with numerical ones it is concluded that
they are in good agreement.

5. The steady-state orbital motion is independent of the initial conditions.
6. Analyzing the relations for the frequency and modulus of the elliptic function it is seen that their form is

the same as that for the cubic equation where the dissipation is neglected. The amplitude a of the limit cycle
strongly depends on modulus k, i.e., on the parameter properties of the system: c0, c1, c2 and c3.

7. The properties of the limit cycle do not depend on the value of e, but strongly depend on the parameter
ratios c0=c2 and c21=c3.

8. For the case of a pure cubic oscillator (c1 ¼ 0 and c340) the amplitude of the limit cycle depends on c3:
for higher values of c3 the amplitude is smaller and vice versa. The frequency of motion o also depends on the
coefficient c3

o ¼ 1:2359

ffiffiffiffiffiffiffiffiffi
c3

c0

c2

4

r
. (75)

For a higher value of c3 the frequency is higher and the period of vibration is smaller (35).
9. Comparing the linear and the pure cubic case it is evident that the frequency of orbital motion and also

the period of motion of the nonlinear system depend on the c0=c2 ratio while for the linear system this is not
the case.
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10. Comparing the linear (31) and the general case (29) it can be concluded that the value of the amplitude
of limit cycle is a product of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=c1Þðc0=c2Þ

p
and an invariant constant value for the linear oscillator and of the

value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=c1Þðc0=c2Þ

p
and a constant which depends on the properties of the system for the nonlinear

oscillator. The motion frequency of the linear oscillator is
ffiffiffiffiffi
c1
p

and for the nonlinear oscillator it is corrected

with a multiplier 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k2

p
.

Appendix A. Elliptic functions

For the convenience of our readers, we gather some facts on Jacobian elliptic functions (see Ref. [18]) for
details. Jacobian elliptic functions satisfy algebraic relations which are analogous to those for trigonometric
functions. The fundamental three elliptic functions are cn ðt; kÞ, snðt; kÞ and dnðt; kÞ. Each of the elliptic
functions depends on the modulus k as well as the argument t. Note that the elliptic functions sn and cn may
be thought of as generalizations of sin and cos where their period depends on the modulus k.

The elliptic functions satisfy the following identities, which are analogous to sin2 þ cos2 ¼ 1:

sn2 þ cn2 ¼ 1; k2 sn2 þ dn2
¼ 1; k2 cn2 þ 1� k2

¼ dn2.

Before averaging, it is very convenient to transform all the elliptic functions into a sinus elliptic function

sn2 dn2
¼ sn2 � k2 sn4,

sn4 dn4
¼ sn4 � 2k2 sn6 þ k4 sn8,

sn2 cn2 dn2
¼ sn2 � ðk2

þ 1Þ sn4 þ k2 sn6,

sn2 cn4 dn2
¼ sn2 � ðk2

þ 2Þ sn4 þ ð2k2
þ 1Þ sn6 � k2 sn8,

sn2 cn6 dn2
¼ sn2 � ðk2

þ 3Þ sn4 þ ð3k2
þ 3Þ sn6 � ð3k2

þ 1Þ sn8 þ k2 sn10.

Averaging the sinus elliptic functions according to Bryd and Friedman [18] one obtains

M2 ¼

Z 4K

0

sn2 dt ¼
4

k2
½K � E�,

M4 ¼

Z 4K

0

sn4 dt ¼
4

3k4
½ð2þ k2

ÞK � 2ð1þ k2
ÞE�,

M6 ¼

Z 4K

0

sn6 dt ¼
4

15k6
½ð8þ 3k2

þ 4k4
ÞK � ð8þ 7k2

þ 8k4
ÞE�,

M8 ¼

Z 4K

0

sn8dt ¼
4

105k8
½ð48þ 16k2

þ 17k4
þ 24k6

ÞK � ð48þ 40k2
þ 40k4

þ 48k6
ÞE�,

� � �

M2mþ2 ¼

Z 4K

0

sn2mþ2 dt ¼
2mð1þ k2

ÞM2m þ ð1� 2mÞM2m�2

ð2mþ 1Þk2
.
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